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Abstract

A multipole-accelerated 3D boundary-integral algorithm capable of modelling an emulsion flow through a granular
material by direct multiparticle-multidrop simulations in a periodic box is developed and tested. The particles form a ran-
dom arrangement at high volume fraction rigidly held in space (including the case of an equilibrium packing in mechanical
contact). Deformable drops (with non-deformed diameter comparable with the particle size) squeeze between the particles
under a specified average pressure gradient. The algorithm includes recent boundary-integral desingularization tools espe-
cially important for drop-solid and drop—drop interactions, the Hebeker representation for solid particle contributions,
and unstructured surface triangulations with fixed topology. Multipole acceleration, with two levels of mesh node decom-
position (entire drop/solid surfaces and “patches™), is a significant improvement over schemes used in previous, purely
multidrop simulations; it remains efficient at very high resolutions (10*~10° triangular elements per surface) and has no
lower limitation on the number of particles or drops. Such resolutions are necessary in the problem to alleviate lubrication
difficulties, especially for near-critical squeezing conditions, as well as using ~ 10* time steps and an iterative solution at
each step, both for contrast and matching viscosities. Examples are shown for squeezing of 25-40 drops through an array
of 9-14 solids, with the total volume fraction of 70% for particles and drops. The flow rates for the drop and continuous
phases are calculated. Extensive convergence testing with respect to program parameters (triangulation, multipole trunca-
tion, etc.) is made.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Squeezing of an emulsion of deformable drops through a granular material of solid particles is a problem of
great relevance to many industrial applications (oil filtration through underground reservoirs, flow through
fixed-bed catalytic reactors, etc.). Of particular interest are the pressure gradient-flow rate relationships for
both the continuous and drop phases, and determining the conditions when the drop squeezing effectively
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stops due to trapping in the pores by capillary forces. A phenomenological approach treating the emulsion as
a single-phase fluid with effective properties is generally insufficient, since in most interesting cases drops are
not small compared to the pore size. To describe the phenomenon from first principles, a method for rigorous,
three-dimensional, large-scale microstructural dynamical simulations must be developed instead, which is the
subject of the present paper. A granular material is modeled as a random arrangement of many solid spheres
rigidly held in a periodic box at high volume fractions (including the most physically relevant case when the
particles are mechanically supported by contact forces); the microscale Reynolds number in these applications
is typically small and inertial effects are neglected. For a single-phase Stokes flow of a Newtonian liquid
through such geometries, much work was done in the past, mostly by multipole methods. Sangani and Acrivos
[1]and Zick and Homsy [2] used expansions based on the periodic Green function to consider the flow through
periodic lattices. Ladd [3] and Mo and Sangani [4] developed multipole techniques to study the flow through
random multiparticle systems. Chapman and Higdon [5] developed a different, multipole collocation tool with
a free-space Green function to simulate an oscillatory Stokes flow through periodic lattices, including the case
of strongly overlapping spheres.

When drops are present, an intricate geometry of the pore space and drop-solid lubrication make the prob-
lem far more complex. An axisymmetrical pressure-driven creeping motion of a single drop through capillary
tubes with constriction was simulated in the past as a simplified prototype model, which captures some salient
features of the emulsion squeezing. (See [6] for a list of references.) All these simulations were based on bound-
ary-integral equations, of the first kind for tractions on solid boundaries, and could not succeed due to ill con-
ditioning for the case when the drop squeezes with high resistance, even in the axisymmetric geometry. Instead
of a boundary-integral method, Graham and Higdon [7,8] used a finite-element approach and fine adaptive
domain meshing to study drop squeezing through a tight constriction. They were able to address the near-con-
tact drop—wall interaction and estimate the critical forcing level necessary for squeezing, even with the full
Navier—Stokes equations. Their solution technique, though, takes significant advantage of the axial symmetry.

Difficulties with the boundary-integral method to simulate drop motion through a tight constriction were
addressed and largely overcome in our recent paper [6], where a 3D flow-driven single drop squeezing through
a free-space cluster of two or three particles (spherical or spheroidal) was considered; this solution, although
lacking periodic boundaries necessary for emulsion flow simulations, captures realistic granular material
microstructure on a small scale. The emphasis in [6] was on the trapping mechanism and flow conditions close
to critical. In this most challenging regime, a drop squeezes very slowly, if at all, with small drop—solid spacing,
nearly coating the solid boundaries. Using the Hebeker [9] representation for each particle contribution as a
proportional combination of single- and double-layer potentials and the reciprocal theorem for the drop inte-
rior leads to a well-posed system of Fredholm second-kind integral equations for the Hebeker density on the
solids and the fluid velocity on the drop. Divergence of simple (Picard) iterations for this system is not an
obstacle, since an alternative iterative scheme (GMRES) works well [6]. This relatively simple starting point
is crucially complemented by suitable boundary-integral desingularization tools [6], especially the novel
high-order near-singularity subtraction in the solid-to-drop double-layer contribution, to resolve lubrication
and avoid drop-solid numerical overlapping, thus allowing simulations to succeed in the near-critical range.
Still, we found it necessary to use typically a few thousand time steps for each run and N, ~ 5000-10,000 tri-
angular boundary elements per surface for robustness/accuracy as the critical conditions for squeezing are
approached; it is unlikely that high-order surface representation/integration rules could alleviate these
requirements.

In a parallel recent study, Zhu et al. [10] offered a different boundary-integral formalism, when drops are in
the interior of a domain V" with prescribed fluid velocity on 0F. They represent the velocity field as a double-
layer contribution from the container plus single-layer contributions from the drops, which also leads to a sys-
tem of second-kind integral equations. Unlike [6], though, the formulation [10] involves a hypersingular
boundary-integral over the container, which we view as a difficulty in applying this method to drop squeezing
through constrictions with significant resistance. A numerical example in [10] with a single drop squeezing
through an axisymmetrical constricted tube (modeled as 3D) is for the conditions when the drop surface is
away from the solid boundary and moves relatively easily through the throat.

Since we seek to extend the method and dynamical boundary-integral simulations [6] to large-scale multi-
drop-multiparticle problems with periodic boundaries, a standard boundary-integral coding, quadratically



A.Z. Zinchenko, R.H. Davis /| Journal of Computational Physics 227 (2008) 7841-7888 7843

intensive in the total number of mesh-nodes, would be far too inefficient to succeed. Relevant here are previous
works [11-13] on fast summation of Stokes interactions in 3D, with an asymptotically linear complexity. San-
gani and Mo [11] developed the first hydrodynamical version of the traditional electrostatical FMM of Green-
gard and Rokhlin. Ying et al. [12] developed a kernel-independent version (applicable to Laplacian and Stokes
interactions), which retains the logical scheme of FMM but is technically simpler and only slightly slower.
Wang et al. [13] recently developed a parallel hydrodynamical version of the new FMM [14]. Of these works,
only the code of Sangani and Mo [11] implemented periodic boundaries (which is an additional burden in
terms of efficiency) and is significantly oriented on dispersed media simulations. By taking a few multipoles
per particle (and adding lubrication analytically, when necessary), they studied sedimentation, effective viscos-
ity and permeability of large random static configurations of solid spheres. Alternative approaches to include
periodic boundaries within the framework of FMM are more involved, even for Laplace interactions [15].

In the present work, though, we do not follow the line of general FMM for multipole acceleration, but
rather stick to the approach initiated in conductivity simulations by Zinchenko for 2D [16,17] and 3D
[18,19] problems and developed further by Zinchenko and Davis [20-22] for 3D hydrodynamical simulations,
all with periodic boundaries. Our scheme is logically simpler and has proven highly efficient, with little over-
heads, in practical dynamical simulations for purely multidrop systems, with several thousand time steps, sev-
eral hundred drops and moderate resolution N, ~ 10° in emulsion sedimentation and rheology applications
[20-22]. For the homoviscous case exploited most, when an iterative boundary-integral solution is not
required, even over 1000 drops could be dynamically simulated [22]. Unlike in FMM, the scheme [20-22] does
not rely on hierarchy of space decompositions by Cartesian grids, but uses instead natural grouping of mesh-
nodes into interfacial surfaces. Another feature is a wide use of rotation-based techniques for multipole reex-
pansions and multipoles of high-order with “economical truncation,” i.e., a broad spectrum of truncation
bounds strongly dependent on mutual geometry of deformable drops for optimized performance. Truncations
used in the algorithms [20-22] are typically based on plausible estimations of the behavior of multipole coef-
ficients for the entire surfaces, which is smooth, at least for low indices. Had we chosen Cartesian cells for
clustering the mesh-nodes, this behavior could be much less predictable, since a cell may contain fragments
from different surfaces.

Compared to our previous purely multidrop simulations [20-22], the present problem of an emulsion flow
through a granular material is literally on the next level of challenge, since it requires about 10,000 time steps
and at least N, ~ 10* resolution on each surface, solid particles and drops together take almost the entire
space, which further complicates simulations, and an iterative boundary-integral solution is necessary at each
time step, even for the homoviscous case. These requirements severely limit the numbers of particles and drops
that can be handled. The performance of the multipole acceleration schemes [20-22] having one level of mesh-
node decomposition degrades for resolutions N, ~ 10* and higher, and these schemes were not designed for a
small number of surfaces in a periodic cell, which limits their application in the present problem. On the other
hand, free-space close interactions of two drops only with superhigh resolution N, ~ 10° were efficiently han-
dled by a different, one level multipole acceleration scheme [23], with partitioning of each drop surface into a
large number of continuous ‘“patches.” In the present work, we have combined the approaches [20-23] to
arrive at a new multipole acceleration scheme with two levels of mesh-node decomposition, which remains
highly efficient for N, ~ 10* — 10° resolutions and has no lower limitation on the number of surfaces in a peri-
odic cell. The logic of this scheme is still less complex than that of FMM. Since the present problem or mul-
tidrop dynamical simulations [20-22] have been unchallenged by other, more general fast summation
techniques, performance comparison is difficult to make; some available hydrodynamical implementations
appear inefficient, judging by the benchmarks [13]. The goal of the present work, though, was not so in bench-
marking, but in developing and testing the entire code capable of dynamical simulations for the emulsion flow
through a granular material; accordingly, many issues arise, other than fast summation of interactions.

The plan of the paper is as follows. In Section 2, the boundary-integral formulation for many deformable
drops squeezing under a constant average pressure gradient is derived, based on the periodic Green function.
The drop phase flow rate, one of the main quantities of interest from the solution, is easily expressed through
the interfacial velocity on drop surfaces. Less obvious, we also show how to reduce the calculation of the con-
tinuous phase flow rate from the solution to surface integrals. In Section 3, we discuss discretizations and
adapt the boundary-integral desingularization tools from [6] to the present multidrop-multiparticle case; of
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particular importance here are the high-order near-singularity subtraction in the solid-to-drop double-layer
contribution, and the variational technique for the double-layer contributions from drops; both are crucial
to make the present simulations work. In Section 4.1, we discuss the general logic of our new and improved
multipole-accelerated scheme for boundary-integral iterations, with a new partition of the periodic Green
function into the near- and far-field parts and two levels of mesh-node decomposition (patches and entire sur-
faces). The next several subsections contain the details of multipole operations (a reader interested in the gen-
eral structure only for the entire code can proceed to Section 5.2). Section 4.2 presents a new algorithm for
generating Lamb’s singular series for a patch, which we found to be simpler and considerably more econom-
ical than our initial scheme [20] for calculating singular moments. Moreover, the new approach leads, in a
non-trivial fashion, to an even much faster routine for the special case of a patch on a spherical surface. In
Section 4.3, we detail on merging Lamb’s singular expansions for individual patches to form an expansion
for the entire surface; this step is rotation-based and made fully optimal in the number of operations. In Sec-
tion 4.4, far-field contributions to the boundary integrals resulting from interactions between remote images in
the periodic Green function are discussed. Sections 4.5 and 4.6, complemented by Appendix A, elaborate on
calculation of additional integrals appearing in our boundary-integral formulation, and on economical
truncation of multipole expansions/reexpansions. In Section 5.1, we discuss the preiterative part of the bound-
ary-integral calculations. Mesh control (Section 5.2), to retain quality of our unstructured drop surface trian-
gulations with fixed topology in dynamical simulations, is based on passive mesh stabilization [21] combined
with occasional active node redistribution through minimization of some new form of a “potential energy”
function; relation to the mesh algorithm of Cristini et al. [24] is discussed. Section 5.3 is devoted to generating
a start-up configuration of drops with high enough volume fraction between solid particles for dynamical sim-
ulation. Relevant here is the paper of Cunha and Loewenberg [25]. They were able to simulate expansion of a
periodic (BCC) emulsion (one drop per cell, no solids) through the boundary-integral solution of Stokes equa-
tions for compressible fluids even to drop volume fractions of 0.98. They noted, however, that this procedure is
very intensive computationally. In the present work, with many drops and particles and high resolution, we
have found it even more prohibitive to reach a desired drop volume fraction through expansion in the course
of boundary-integral simulations. Instead, Section 5.3 offers a new and simple, yet artificial “swelling tech-
nique” to prepare a start-up drop arrangement. Miscellaneous features of our algorithm are discussed in Sec-
tion 5.4, including optimization for the homoviscous case and control of numerical drop—solid overlapping.

In Section 6.1, drop motion through a free-standing cluster of four spheres is simulated, to test the free-
space version of the code and demonstrate a confining effect of solid boundaries on drop deformation. Solu-
tions of Ladd [3], Mo and Sangani [4], and Chapman and Higdon [5] for a single-phase flow through random
and periodic beds of spheres provide very useful tests for our code in Section 6.2. Finally, we present in Section
6.3 examples of the most demanding long-time multiparticle-multidrop simulations for contrast and matching
viscosities, with convergence and performance analysis.

All timings below are for single-processor calculations on AMD PC, with Opteron 2.8 GHz CPU.

2. Boundary-integral formulation

Consider a three-dimensional flow of an emulsion of deformable drops through a granular material (Fig. 1).
The granular material skeleton is modelled as a random arrangement of N solid particles with surface cen-
troids X, ... X% in a periodic cell [O,L)3 and triply-periodic continuation into the whole space. The particles

N

are assumed to be rigidly held, with the no-slip boundary conditions # = 0 for the triply-periodic fluid velocity
u on the particle surfaces :S'\l, .. §§ and their images. The drop phase is formed by N deformable surfaces

§1, .. §; with centroids X{,...X% € [O7L)3 and triply-periodic continuation. The drops are Newtonian, free
N

from surfactants, have a constant interfacial tension ¢ and viscosity u™ and are freely suspended in a New-
tonian continuous phase with viscosity u°. The microscale Reynolds number is assumed small and so the
Stokes equations apply. To make the solution unique for each configuration, some integral properties must
be specified. By an analogy with drop motion through periodically constricted tubes [8], we can prescribe
either a constant flow rate for the emulsion, or a constant-pressure gradient. Our ultimate goal is to handle
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Fig. 1. Sketch for the flow of deformable drops (light shading) through a random array of fixed solid particles (dark shading) in a periodic
box [0,L)’ under a pressure gradient, not to scale.

large systems with N, N > 1. For such systems, the difference between the two formulations is expected to
disappear (Higdon, J.J.L., personal communication). The constant-pressure gradient formulation, though,
provides some computational advantages (Section 5.4) and was chosen in the present work. The pressure is
represented as p(x) = (Vp) - x plus a periodic function, with a given average pressure gradient (Vp). Integrat-
ing the stress vector over the boundary of the periodic cell and using the divergence theorem represents the
average pressure gradient condition in a convenient form

Fy=—(Vp)V, (2.1)

M2>

1

=
Il

where the LHS is the total hydrodynamical force acting on the solid surfaces S Lyeo- E;V\, and ¥ = L* is the cell
volume. Using the standard technique of energetic inequalities (e.g., [26]), it is easy to see that (2.1), indeed,
makes the problem uniquely solvable for each configuration. The equations below are made non-dimensional
using U = |(Vp)|a?/p¢ and L as the velocity and length scales, respectively, where @ is the characteristic radius
of solid particles; for simplicity, the average pressure gradient is along the negative x;-axis.

A system of boundary-integral equations is facilitated through the use of Hasimoto’s [27] periodic Green
functions G* (x)(k = 1,2,3) and corresponding stress tensors t*)(x). The vectors G*)(x) and the correspond-
ing pressures P (x) satisfy

V26 (x) - VPW (x) = V-t (x) = 3 5(x — m)ey. (22)

where the summation is over all lattice points m = (m, my, m3) with integer m,, m,, ms, and e, are basis vectors.
The additive constants in G* are chosen so that the average of G™ over the periodic cell is zero.
Green’s theorem and no-slip conditions on S, give, for a point y lying outside the particles and drops,

~ ~

() =Y jL [GY () - To(x) — u(x) - 29 (r) - m(x)]dS, + D [ GW(r)- TE(x)dS, + (). (23)
=1 /S p=1 S

Here and henceforth, index e marks the values for the continuous phase, T, = T - n is the stress vector (T
being the stress tensor), n is the outward normal to a surface, and r = x — y. The additive constant () (the
average velocity over all phases, with # = 0 inside §,) stems from the integration over the cell boundary
(cf. with Eq. (2.4) of Zinchenko and Davis [20]). The flow inside the drops is excluded in a now standard
way [28] through the reciprocal theorem,

% (GO @) - T (x) — 2u(x) - 1 (r) - n(x)]dS, = 0 (2.4)

Sp
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and stress jump conditions at an interface, to yield

~ ~

W) =Fy) + (-1 ,[ u(x) ¥ (r) - m(x)dS, + } G(r) - T5(x)dS, + (ue), (2.5)
p=1 Y Sp p=1 B
with
20 ul
FO) = 2 2 A}gk(x)n(x) - G(r)dS,.. (2.6)

In Egs. (2.4)(2.6), index int relates to the drop phase, 4 = u™ /u¢ is the viscosity ratio, the non-dimensional
group |(Vp)|a?/o is related to the caplllary number (Section 6), k(x) = (k; + k,)/2 is the mean surface curva-
ture at x € Sg, and G = (G OO G( ) is the symmetric second-rank Green tensor.

It is inconvenient that the kernel ¢ (r) is not periodic, but contains a linearly growing part from the pres-
sure P (x), so we recast (2.5) in terms of the periodic kernel (cf. [20])

9 (r) =19 (r) — el (2.7)
Note that %) has a constant, non-zero divergence at r # mand the tensor = {%g‘) } isnow symmetric in all three

indices. With ¥ replaced by ¥, Eq. (2.5) still holds, just (u) is replaced by another, yet unknown additive con-
stant which can be found, in principle, when the solution is substituted into (2.1). However, for any prescribed

additive constant, the form (2.5) leads to a system of integral equations of the second-kind for # on S, but of

the first kind for the fractions 7, on solids S,.Our experience for a single drop interacting with a finite, free-space
cluster of particles [6] shows that an approach involving first kind integral equations fails to simulate 3D drop
squeezing through tight constrictions due to ill-conditioning, and it must be also avoided in the present, more
complex problem. Double-layer representation for the solid—particle contributions could not be used either, since

it is range-deficient and cannot accommodate non-zero hydrodynamical forces and torques acting on /S\/}

Instead, we notice that each integral in (2.5) over S s 1s a periodic Stokes flow outside S s and its images with
a zero total flux through s s, and it can be converted into a linear combination of a single- and double-layer
potentials:

Jé G(r) - T,(x)dS, =/§ q(x) - [nG(r) + 2%(r) - n(x)]dS;, (2.8)

given an arbitrary factor n > 0. Indeed, assuming temporarily that T, (x) in the LHS is given, (2.8) gives a
boundary-integral equation for ¢(x) on S; with a unique solution (the proof is analogous to that of Hebeker
[9] for a free-space flow past a single solid body). Moreover, it follows from this equation for g(x) that the
total flux of g(x) through S; is zero, a condition necessary for the RHS of (2.8) to be a Stokes flow, which
proves the representation (2.8). In terms of the Hebeker density ¢g(x), the force balance (2.1) takes the form

i /E,; g(x)ds = (%);. (2.9)

Let the prime denote the prOJectlon of a vector field on the subspace of rigid-body motions on a surface. Intro-
ducing the fluctuations Q = ¢ — ¢’ (on Sa) and Q@ =u —#' (on S,), the representation (2.5) can be written as

u'(y) =uo(y) + C, (2.10)
where
wy(y) =F) + (A —=1)) } O(x) - %(r) - n(x)dS, + ) f Q(x) - [1G(r) 4 2%(r) - n(x)]dS,
p=1 7 Sp p=1 7 Sp
+ Z % q(x)- [nG(r) + 2%(r) - n(x)]dS, (2.11)
p=1 /S
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and C is another additive constant. Taking the limit y — S, (or §[x) gives the system of second-kind integral

equations for ¢(x) and u(x). The spectral properties are improved (for A < 1 or 1 > 1, although slightly in the

present calculations) when this system is recast in terms of the “deflated” velocity [29] w = u — ku’ (with
=(A=1)/(A+1) and w—w = u—u'), so the equations to solve for ¢ and w take the form

q(y) = (w)s(») + C, yeS, (2.12)

w0) = g [0+ €]+ 520 [ wnas, pes

where the subscript S denotes direct values on a surface. The constant C is expressed by substituting the first
relation (2.12) into the force balance (2.9), and so the system (2.12) can be written in the operator form
X =AX + B for X = (¢,w). A traditional iterative method of “successive substitutions” into the RHS is
divergent for this system, but successful solutions are obtained by minimal residual iterations (see Section
5.4 for more detail). Rigid-body projections ¢', w' are easy to calculate, e.g., ¢ = (q), + € X (x — X;) on S,
where (---), is the surface average over S,, and the vector Q is the solution of a 3 x 3 system [30]:

{/A [ m)T - (x_i;)(x_f‘;)}ds}gzjé (¥ = %) x was. (2.13)

o o

The interfacial velocity is recovered as u = w + (4 — 1)w’/2. In the limit of fine surface discretizations, results
are independent of 1 > 0, but in practice, values of 1 ~ @' are optimal for numerical solutions, as for finite
clusters of particles [6].

The last term in (2.11) is calculated analytically, which is possible for spheres (Section 4.5) and other cano-
nic solid particle shapes (e.g., spheroids, 3D ellipsoids, etc.). This present limitation on our algorithm still pro-
vides enough generality for a granular material with globular grains, whereas particles of more complex shapes
would introduce too many parameters to make it a tractable study. We have found the splitting ¢ = ¢ + Q to
be very important in the case of high solid volume fractions (typical of a packed granular material): due to low
permeability, ¢(x) takes on relatively large values, and subtracting the rigid-body component ¢’ (most substan-
tially, the (g)-part of it) greatly reduces the numerical error; otherwise, the convergence is poor and our
dynamical simulations could not succeed. This issue did not arise for finite clusters [6].

The main quantities of interest from the solution of (2.9) and (2.12) are the non-dimensional, instantaneous
drop phase (Up) and the continuous phase (U() velocities, with subsequent time averaging. Calculation of Up
is simply reduced to surface integrals (cf. [6]):

1 & 1 &
- dyv = — . — %9)ds, 2.14
) /:u > Aw n)(x — ¥) (2.14)

where 171 is the domain bounded by §1, and ¢, is the drop volume fraction in the total space. For U, which is
the volume average of u over the continuous phase in the periodic cell [0, 1)3, the procedure is less obvious. We
note that #(r) is a periodic, odd function and, hence, it has a zero mean over any periodic cell, as does G(r).
Consequently, the field (2.11) uo(p), if formally continued into the whole space, has a zero mean over [0,1)’,
and, from (2.10),

N
Ur=C——— / updV + Y /A udV |, (2.15)
o a=1 o

where ¢, is the solid volume fraction in the total space, and 91 is the domain bounded by §m. It remains to
transform (2.15) to surface integrals (cf. (2.14)) and relate the boundary values of wy on the inner side of
S, (or S,) to (ug)g through the jump properties of the double-layer potentials (2.11), to obtain:

Ve=Copt— Z/i{[uo vy ]-n}(x—fc;)dS—&-ijé{[(u0)5+q]-n}(x—ig)dS

(2.16)
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Relation (2.16) must be used as written, with (u)¢ taken from (2.11); we found that further analytical manip-
ulations using (2.12) can bring simpler expressions, but with poor numerical convergence.

Instead of the Hebeker form, a Power-Miranda [31] representation could be used for the solid—particle con-
tribution (2.8) as a double-layer plus additional Stokeslet and Rotlet contributions from the particle center to
complete the range. Such an approach was tested for finite clusters [6] but the Hebeker form was found to be
considerably more robust, when a drop squeezes with high resistance. We came to the same conclusion in the
present calculations.

3. Discretization and desingularization

Each drop and particle surface is represented by an unstructured mesh of flat triangles with vertices x/
(called the mesh collocation nodes). All regular integrals (e.g., (2.13)—+(2.16)) and boundary integrals (after suf-
ficient desingularization) are calculated by the simplest second-order trapezoidal rule, with reassignment of
triangle contributions to vertices [32]:

[oas =S oxas, (3.1)
S x/es
where AS; is 1/3 of the sum of flat triangle areas sharing node x/. The rule (3.1), however primitive it may
appear, is very economical and has significant advantanges in the problems with close surface interactions
(including those in [20-23] and the present problem). The solution in this case is not smooth enough and a
large number of boundary elements is needed anyway, which discourages the use of much more expensive
high-order integration schemes.

The singular and near-singular behavior of the integrands in (2.6), (2.11) at x — y =~ m stems from the free-
space contributions

1 (1 & 3 &8¢
Go(&) 87 (f + £3>> (&) an 55 (3.2)
to G and 7, and it has to be alleviated for successful simulations. A set of desingularization tools found most

suitable for a single drop squeezing through a finite free-space cluster [6] is used herein, but with necessary
adaptations and optimizations for a multiparticle-multidrop system, as outlined below.

3.1. Drop-to-solid and drop-to-drop contributions

Let x™ be the mesh-node on §,;, which is closest to the periodic shift y — m of mesh-node y. Introducing the
fluctuations f'(x) = k(x) — (k); on S, the single-layer integrals (2.6) are approximated as

/5 Kx)n(x) - GdS, ~ 3 f(¥)n(x) - G/ = )aS; = 30" 37 Golx/ — y -+ m) - n(x/)aS;.

xeSy xeSy
(3.3)

Here O, is a “barrier function,” equal to 1 for |[y — m — x™| < hy and zero otherwise, where the threshold 4 is
normally set to 0.25a; the undesirable effect of discontinuity in @, is alleviated by using the fluctuations f'(x)
instead of &(x). The value f/* of f(x) at the surface point x}, € Sy nearest to y — m is calculated by linear inter-
polation from the set of nodes A;, directly connected to x™:

ST Y e v m = X)) = £ ()], (34)

JEA
where ¢;; = (¢1;,¢2,:,¢3,,;) and the coefficients ¢ ;; depend only on the surface geometry around x’ and are
given by simple formulae (3.12) of Zinchenko and Davis [6]; /* is used instead of a more straightforward f(x™)

to smooth the subtracted term. For m = 0 and y € S (“self-interactions”), ¥/ = y is excluded from the sub-
tracted term (3.3) (see Section 4.1 for more detail). The subtracted term in (3.3) provides full desingularization,
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but disappears in the limit of fine triangulations. Owing to the barrier ®;, the subtracted terms (3.3) are in
effect only for close interactions and are relatively inexpensive to calculate by the simplest, point-to-point
summations.

For the double-layer contributions from drops (2.11) (omitting the factor A — 1), a strongly singular (~ r~2)
behavior of the integrands is alleviated by the variational technique of Zinchenko and Davis [21]:

[ O(x) - #(r) - n(x)dS, ~ > Q(x)) - #(x/ — p) - n(x/)AS; — Z®1Q Z 10(x — y + m) - n(x')AS;
S5 x/'EE/; veSy

(3.5)

(with the same barrier function ®; as in (3.3)). The quantity Q" is required to minimize the Euclidean norm of
the free-space contribution to (3.5) from each m after subtraction, which yields, after some algebra [6,21]:

i j 1378 . N
0 Y w(E) niwas, = pr. Y (LIS ONE (36)
x/'e;/; xiegﬁ }5 |
where, for brevity, ¢ = x/ — y +m, and the matrices
-1
3 & n(x)as ]’ &E & n(x)]a5,8¢
E NG

X/ €Sy

(3.7)

x/ES/;

are precalculated (for ©, # 0) before the iterations (with compact storage). In the special case of “self-inter-
actions” (m =0, y € Sg, ©; = 1), (3.6) and (3.7) are ignored, and Q" is set to Q(p), with 1 Q(y) added to (3.5),
which is akin to the standard singularity subtraction in the free-space double-layer. Agam the barrier ®, con-
siderably limits the amount of work, and the corresponding operations in (3.5)—(3.7) are handled in the sim-
plest, point-to-point manner. The technique (3.6) and (3.7) greatly improves the spectral properties of the
discretized boundary-integral equations for close drop—drop and drop-solid interactions in concentrated sys-
tems at 1 # 1, and it is one of the most essential elements of our algorithm. With a more obvious choice
Q" = Q(x™) in (3.5), iterations become nonconvergent after a short simulation time, which was observed both
for the emulsion shear flow [21] and in the present calculations, even with a moderate viscosity contrast; to
make the choice Q" = Q(x™) work, much higher surface triangulations would be required. It can be noted,
however, that the technique (3.5), (3.6), and (3.7) does not completely eliminate singularity of the integrands,
only reduces it to O(¢™").

3.2. Solid—solid contribution

For each integral (2.11) with Q(x) over E,;, when the observation point y € S,, a simpler desingularization
is used, and this integral is calculated as

3 0() - G — )+ 26(x' —y) - n(x/)]S; + > ©:0() 1l(y — m, ), (38)

x/ES/;

where, again, x* is the node on §,;, which is closest to y — m, and the symmetric second-rank tensor

Ny, p) = - Z G (1) + 220(r) - n(x))]AS; + 1 [ Go(r)dS,, (3.9)

x/eS/; 5
with ¥/ = ¥/ — y and r = x — y. The integral in (3.9) is handled analytically, which is possible for spheres (Sec-
tion 5.1) and other canonic solid shapes [6]. The barrier ©, is different from ©;, namely, for all nodes y € S.,
©, = 1 if the minimum node-to-node distance between S, and the periodic image S p + m of surface S p shifted
by m is less than the threshold /y(= 0.25a), and ®, = 0 otherwise. For “self-interactions” (when « = f# and
m = 0), Q(y) is added to (3.8) and ¥ = 0 is excluded from the summation (3.9). Compared to O, the barrier
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®,, as a function of y, does not have discontinuity within a chosen observation surface §y > y (which we have
found important for solid—solid contributions at high concentrations), but it increases the number of opera-
tions in (3.8). However, in the present case of stationary meshes on solid particles, the elements II(y — m, f3)
are time-independent and calculated only once (by the simplest point-to-point summations), so the additional
term in (3.8) does not slow down dynamical simulations. The form (3.8), again, does not achieve complete
desingularization (except for o = f8), but was sufficient, since the solid particles have no relative motion in
the present problem, with no solid—solid lubrication.

3.3. Solid-to-drop contributions

Single-layer contributions from solids in (2.11), when y € S,, are desingularized similar to (3.3), using the
value Q" of Q(x) at the surface point x§ € S, nearest to y — m, found by interpolation (cf. (3.4)). For double-
layer contributions, however, a more elaborate approach is required, since drop—solid interactions (compared
to drop-drop) are very lubrication-sensitive. Here, we follow our recent idea of high-order near-singularity
subtraction [6] and construct a local linear approximation

)+ Y [Crin - (x = ¥)][QF) — Q(x")] (3.10)

JEAK

to Q(x) near x™ on §ﬂ (with the same C-coefficients as in (3.4), just calculated on the solid :S:,;), and subtract
(3.10) from Q(x) in the double-layer terms to fully desingularize the integrands. For solid-to-drop contribu-
tions, most affected by numerical implementation, we employ a barrier ®; analogous to ®, with additional
smoothing: for a// nodes y € S @y =1-0¢ /hz, if the minimum distance 6 between S, and S s + mis less than
the threshold Ay(= 0.25a), and ®; = 0 otherwise; a more economical barrier ®,, or its smooth analogs, were
not satisfactory for solid-to-drop contributions in the present problem. So, each integral (2.11) with Q(x) over
a solid surface Sy, when y € S, is approximated as

Z O(x') - nG(x — y) + 2¢(x' — ) - n(x)] S,

+z®3{g Ny -—mp)+ 3 C Ty - m,ﬁ)~[Q(x")—Q(x"*)]}- (3.11)
JjeAix
Here,
0 = 0(x)+ 3 [Chr. - (v — m— x)] [Q(¥) — O(x")), (3.12)

JEA

tensor IT has already appeared in (3.9), and an additional third-rank, fully symmetric tensor is

F(Lﬁ)z% -y MAS,«—&-/E Mdb‘x : (3.13)

v /] |r |

~

XIGS/;

The added-back integral in (3.13) allows for analytical treatment for spheres (Section 5.1) and other cano-
nic shapes [6]. The calculation of the subtraction tensors IT and I is taken out of iterations but, when done by
the simplest point-to-point summations, would be too expensive (comparable in cost with the multipole-accel-
erated iterative solution). For this reason, we also employ multipole acceleration to calculate IT and I', as
described in Section 5.1.

The paper [6] gives reasons why we have to use, in the drop squeezing problem, different desingularization
schemes for different types of interaction. In particular, high-order subtraction (3.11) could not be used for
double-layer drop contributions because of the added-back integral in (3.13). On the other hand, the varia-
tional approach (3.5)—(3.7) is not powerful enough for handling solid-to-drop contributions, and (3.11)-
(3.13) provide the only viable alternative.
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4. Multipole acceleration of iterations
4.1. General scheme

Below we discuss economical calculation of the first sums in (3.5), (3.8) and (3.11). These operations, per-
formed on each iteration, present the most computationally-extensive part, and using direct point-to-point
summations to this end would be very prohibitive for all simulations of interest. Multipole acceleration tools
developed for multidrop interactions with periodic boundaries [20-22] could be used herein. Those techniques,
however, with one level of mesh-node decomposition and multipole expansions generated for individual sur-
faces (or the compact blocks that each elongated surface is divided into, Ref. [20]) were designed to be efficient
for large systems of drops (N ~ 10? — 10*) with moderate resolution (N, ~ 10* triangular boundary elements
per surface). The efficiency of acceleration goes down for much higher resolutions and/or smaller systems. In
fact, the partitioning of the Green function into the “near-field” and “far-field” parts in those algorithms
requires the system size to be not too small (roughly, N > 20 — 50 at high concentrations); in particular, peri-
odic systems (N = 1) cannot be handled. On the other hand, free-space close interactions of two-drops only
with superhigh resolution (N, ~ 10°, necessary for Ca < 1) were efficiently handled by a different multi-
pole-accelerated code [23] with partitioning each drop surface into a large number of “patches.”

In the present problem of emulsion squeezing through a granular material with high resistance, high surface
resolution (at least N, ~ 10%) is most important for successful simulations and severely limits the size (ﬁ , N)
of the systems that can be handled at present or in the near future. For this reason, we have combined the
techniques of [20-23] to develop a new multipole-accelerated code with two levels of mesh-node decomposi-
tion, which is efficient at high surface resolution both for large and small systems, and has no lower limitation
on the system size (]/\7 , N). Besides, we have found considerable improvements to some relevant multipole tools
of [20-23], especially for the important special case of spherical solid particles, and developed some new tools,
as detailed below.

On the finest level of mesh decomposition, the collocation nodes x/ on each surface are grouped into a large
number of non-overlapping sets called “patches” (Fig. 2). For each solid surface SOU a stationary, crude aux-
iliary mesh, almost uniform with M,>1 triangles (and M, /2 4 2 vertices 7V € S, ») 1s first constructed, with
associated Voronoi cells around each z’; each cell is an intersection of typically six (rarely five) half-spaces. A
patch B, simply consists of the nodes x/ of the main (almost uniform) mesh on Sx, which are closer to z’ than
to any other crude mesh-node on S,,. The same procedure is applied to each drop S, in the initial configuration
when the drop is spherical, starting from a crude auxiliary mesh with M, > 1 triangles and the initial nodes
x/ € S, of the main mesh, both meshes being almost uniform. The initial partitioning of drop nodes ¥/ € S,
into patches B, is kept unchanged in the swelling process (Section 5.3) and subsequent boundary-integral sim-
ulation, although drops deform and x/ move. These algorithms of grouping mesh-nodes into patches simplify

Fig. 2. Grouping of mesh-nodes (small size dots) into non-overlapping patches B,. Lamb’s singular series about the patch centers (e.g., x?)
are merged into cumulative singular series about the center x% of the minimal shell Dy around Sj. For “sufficiently separated” patches B,/
and B;, the B, — B; free-space contribution is handled by singular-to-regular reexpansion. Otherwise, for node y’ € Sy, either Lamb’s
singular series about x5, or direct summation over B? is used.
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that of Ref. [23] (where partitioning was done dynamically at each time step). As in that paper, it is optimal to
have 200-400 nodes x/ per patch for multipole acceleration. It would be relatively easy to adapt our stationary
meshes on solids S, to constriction regions, in which case the auxiliary mesh would also have to be non-uni-
form to keep the number of nodes per patch almost constant, for maximum efficiency of multipole accelera-
tion. We have found adaptive meshes on solids, however, to be disadvantageous in the present problem, since
they reduce the global accuracy.

A minimal spherical shell D, with center x and radius d is constructed around each B,, both for solids S,
and (dynamically) for drops; a 51mple stochastic algorithm [20] provides sufficient accuracy for this operation.
Using (approximately) minimal shells is also 1mportant for the efficiency of multipole acceleration. For the
special case of spherical solids S, the center x} of the shell D, around B, C S, is constrained to be on the sur-
face S,, which increases the minimal radius d? only slightly but allows much faster generation of the mu1t1pole
expansion (below) for the patch B, than by a general algorithm, Minimal spherical shells D, with centers x0
and radii d are also constructed around each solid S, and drop S, (for drops, we are not using the slicing [20]
into compact blocks); D, = =3, fora sphere S,. To avoid confusion, symbols 7y, § are reserved for patches and
associated quantities, while o, § are used for the entire drop and solid surfaces; unless otherwise stated, S,
stands for S, or S,.

The free-space contribution of each patch B, to (3.5), (3.8) or (3.11), i.e.,

(A=1) > OW) -w(x —y)-n(x)aS; or Y Q) [1Go(x' — y) +250(x' — ) - n(x')]aS;,  (4.1)

x/'EB-/, x/GB

is expanded in Lamb’s singular series:

2,
()

convergent for |R,| > d? where R, =y — x), and P! ‘+1 (R,), @Q'EM)(R,.), 7 (v+1)(R;) are solid spherical har-
monics of order —(v+1). These harmomcs are generated to a sufficient order (v < ko, with typically
ko = 25-30) by the new algorithms of Section 4.2; these algorithms turn out to be considerably more eco-
nomical than our 1n1tlal scheme (Section 3.2 of Ref. [20]) for calculating singular moments. Generation of
harmonics p(fzv 1) ") (v41)> *% .1y 1s particularly fast for a patch B, on a spherical surface by a special
technique.

The next step is to translate the expansions (4.2) for all B, C Sj to the center xg of the shell Dy in order to
obtain a cumulative Lamb’s singular series

RV, (0 Dp R,
2(2\)—1) eI

Vo (R) + V00, + Vo, (4.2)

o 2 f
(o () o U )
for
(A—1) Z O(x)) - to(x) —y) - n(x')AS; or Z O(x)) - nGo(x' — y) + 27o(x/ — y) - n(x)]2S;, (4.4)
xesSy x/ES/;
convergent for |Rg| > d%, with Ry =y — xﬁ and v < k. This operation (“merging of singularities”), which is

absent from our algorithms [20—23], is most efficiently done through rotational transformations of spherical
harmonics and described in Section 4.3; the cost of translation for one patch B, becomes O(k}).

The periodic Green function G and the corresponding stresslet  are split into the “far-field” (G, t;) and
“near-field” parts:

=Y Go(r+m)+Gr) , %)= > tolr+m)+1(r), (4.5)
|m|<my [m|<mo

with integer vectors m. Algorithms [20-22] employed m, = 0 suitable (and optimal) for sufficiently large sys-
tems (roughly N > O(10?)). In the present work, we use my = 2 to move singularities of G'(r) and 7, (r) much
farther away from the origin; my = 3 would be beneficial for the smallest systems (N, N ~ 1).
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Now, to calculate the contribution of a single surface Sy to the sums (3.5), (3.8) or (3.11) for y € §,, the
surface Sy is temporarily shifted by an integer vector m,; to a new position Sﬁm = Sy + m,p to minimize the

center-to-center distance x?;mi“ — x‘jH (with x?;mm = x% + m,p) between the corresponding shells; index min

will supplement quantities related to S;ﬁn. Using (4.5), the contribution of Sy can be written as

SN L+ Y L (4.6)

[m|<mg xi ES;“" +m x/'GS;;‘i“

where, for brevity, [...], is either Q(x/) - 7o(x/ — ) - n(x/)AS; or Q(x/) - [nGo(x/ — y) + 27o(x/ — p) - n(¥/)]|AS;

(assuming periodic continuation for @, n, AS); analogous for [...],, with 7;, G| instead of 7y, Gy. The far-field
contribution to (4.6) is efficiently calculated by a special form of Taylor double series for 7;(x/ — y) and/or
0,min

G, (x/ — ) in powers of x/ — x;"and y — x? (Section 4.4); for my > 2, convergence is very fast, even for small
systems, and just a few terms suffice. _
If the shell D™ + m around Sy"" + m and shell D, do not overlap, the (free-space) contribution of S3™ + m

0,min

to (4.6) can be evaluated at y € S, by first reexpanding the singular series (4.3) (written for y —x;™" —m
instead of Ry) into Lamb’s regular series

- (n+ 3)R§Vp,, np,R,

> [V X (Rogty) + V@, + 2+ 1)(2n+3) (n+1)(2n+3)] @7

n=1

where R, =y — x and p,(R,), ®,(R,) and y,(R,) are solid harmonics of order n. However, only drop images
S}“i“ + m “sufficiently separated” from S, are included in this operation, so that the shells D;}“i“ +m and D,
have enough clearance for the reexpansion to converge within prescribed tolerance and threshold
(v,n < ko). The free-space contributions of all such images S}fni“ + m to (4.6) are summed over all m and all
B, using a fast, rotation-based reexpansion algorithm (Section 3.3 of Ref. [20]). The cumulative series (4.7)
is then transformed to a more efficient form (see Eq. (3.19) of Ref. [20])

3R D n(R) 4 S (R 3)

where h,(R,) are solid harmonics of order n with vector coefficients, and calculated pointwise for all nodes
yeES,.

Some free-space contributions in (4.6) are still not accounted for by the above scheme, in particular, “self-
interactions” (S, = Sy = Sﬁin and m = 0). In this case, singular expansions (4.2) for all patches B, C S, “suf-
ficiently separated” from a given patch s C S, are reexpanded into Lamb’s regular forms and summed up, to
form cumulative expansions of the type (4.7) and (4.8) for the patch Bs (with R; =y — xJ in place of R,) and
calculate them pointwise for all mesh-nodes y € B;. If a patch B, is not “sufficiently separated” from B3;, then
the contribution from B, to y for y € B; is calculated either by direct summation (4.1), or by Lamb’s singular
series (4.2) converted into a more efficient form (Eq. (3.21) of Ref. [20]):

1 o0 o0
ERT pr(wl)(Rv) + Zh—(erl)(Ry)y (4.9)
v=1 v=0

where h_(,) are solid harmonics of order —(v + 1). The second strategy is chosen if (i) (4.9) is more efficient
for point y and (ii) the truncation bound on v in (4.9) to reach necessary convergence does not exceed the
threshold ko. When B; = B,, ¥/ = y is excluded from direct summation.

Finally, the last remaining free-space contributions in (4.6), namely, when S;;‘m + m is different, but not
“sufficiently separated” from S, are handled in a simpler manner (Fig. 3). Lamb’s singular series (4.3) for
the entire surface Sg‘i" + m, converted to the more efficient form (4.9) (with y — x%mm — minstead of R,) is used
for y € S, if the truncation bound on v necessary for convergence does not exceed ky. Otherwise, we consider
the free-space contribution of S;;ni“ -+ m to (4.6) as a sum from individual patches and employ for each patch
either the multipole expansion (4.9) (only if the necessary truncation bound on v is within k) or direct sum-

mation (4.1), depending on which is more optimal.
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Fig. 3. Free-space interaction of periodic images (S, S, Sp, etc.) with another surface S,. For S} “sufficiently separated” from S, the

S;f — S, contribution is handled by singular-to-regular center-to-center reexpansion. For node y “well outside” the shell Dy around Sy,
Lamb’s singular series about the shell center is used for Sy — y contribution. The contribution S}; — yis handled as a sum from individual
patches, with either Lamb’s singular series or direct summation used for each patch.

A rather general description of our multipole acceleration scheme above is complemented in the following
subsections by the details of multipole operations. In Section 5.2, we return to other, non-multipole features of
the whole algorithm.

4.2. Generation of Lamb’s singular series for a patch

To expand the patch contribution (4.1) in Lamb’s singular form (4.2), in principle, the techniques of Ref.
[20] (Section 3.2 therein) could be used based on rotational transformations of spherical harmonics. In the
present work, however, we found a simpler and considerably more economical way, without the use of rota-
tional transformations.

We start from a special form [20] of the Taylor series for a harmonic function:

=33 0.,/(x)

v=0 pu=-—v

Zu(x —x%), d,,= (D —iD,)"D; ", (4.10)
x=x0

where D, = 8/0x, is the Cartesian partial derivative, (D, — iD,)" = (—=1)"(D; +iD,) " for u < 0,i = v/—1, and
Z,, are related to standard spherical harmonics Y, ;:

211 21Y L (r)

Zyu(r) = .
v+ D0 — 0+ )"
2+ D", o
Yy u(r) = {W} Pt(cosb)e (n=0),
Youlr) = (<1)'Fu(r) (< 0) (4.11)

for a vector r = (rsin fcos @, rsin 0sin @, rcos 0), P! is the associated Legendre function (in the definition of
[33]) and the overbar stands for complex conjugation. Relation (4.10) can be shown to be equivalent to (27) of
Sangani and Mo [11].

Let Py(¢) = (77(1)7 Pe, 778) =4V % be the vector of pressures for the free-space Green tensor (3.2) Gy(&). An
auxiliary function

gi(x.y) = G (e —y) — 3 (x—a8) Pix—) (@.12)
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is a harmonic function of x, as well as Py(x — y), so both can be expanded in the vicinity of x = xg using
(4.10). Substituting (4.12) for x = x/ into (4.1) gives the single-layer free-space contribution in the form

Z O(¥)Gy (¥ — y)AS; —Z Z Z ASZwt(x - X )Q(x/) 0,8 (x,9)

x/eB, v=0 p=—v | x/eB, )
x=x

v=0 pu=-v | x/eB, 0
X=X,

(4.13)
Here, the differential operations are with respect to x, and g" = (g{, g}, g5). The pressure for the stresslet flow
(ht, o2, 2h3) (&) is P& (&) = 20P;(€)/0¢E,. An auxiliary function
1 .
é _ sk, _ _ (s 0 (K _
f(x,) = 10" (x —p) = 4 [(x x ) Py(x =)+ ( x.,,)fo (x y)} (4.14)

is a harmonic function of x, so is P& (x — y), and both can be expanded near x = xf; using (4.10). Substituting
(4.14) for x = ¥/ into (4.1) yields the double-layer contribution

ZQ xj [Sk Wk xj Z ZE‘MASa‘utAk xy) +Z ZDt;tka‘HPkay) . (415)
x/eB, v=0 pu=-—v +0 v=0 pu=-—v x=x9
The patch double-layer moments are defined as
v;tkv ZW Qk ‘#(xj_xg)7
xeB,
D=1 3 2o (¥ — )G W) + W) Q)] - (¢~ ). (4.16)

xeB,

where W(xf) = (A—1)n(x’)AS; on a drop and W(x/) =2n(x/)AS; on a solid surface, respectively, and
WOy =5 (W0, + W,0Q,) is the symmetrization in indices s and k.
The next step is to transform (4.15) to a form containing only 9, ,g* and d, ”73 Since Py (&) is harmonic, the
following simple algebra applies:

0y, P = (Dvriyrt — Ovitye1) Py 00, PG = i (Ot st + Ovrryet) P
6»'4175([)3 = 26\r+1,u7)€- (417)

For #,, we note that ¢, (x,y) = D,g;(x,y) + Dig'(x,y), the derivatives taken with respect to x, so 9, 7, can be
expressed via 0,1 ,,g" similar to (4.17). As a result, the RHS of (4.15) takes the form

¢
X S [0, (x.y) + DYRL, P x - v (4.18)
u=-v v
with
E\(j/)z = (E\ u,l>E$ ZzaEE';)ﬁ)?
M _ 50 50 £() G e
Evtu,k = Ev}flnufl.kﬁl + lEv)—)l,yfl,k,Z - E‘Ll.y+1,k71 + lEv)—)l,;Hl,k,Z + 2E5—>1,u,k,37
7 _ PHO) -7(7) (1) -7(7) (1)
DE,)J = 'Dvy—l,y—l,l + ’Dv:l,wl,z - D\y Ll l T iD,” Ll T 2Dvil<u,3 (4.19)

(assuming that D i and E‘ s are zero for |u| >v).

For a patch on a solid surface single- (4.13) and double-layer (4.18) contributions are now combined. The
problem is always reduced, therefore, to generating Lamb’s singular series for (4.18). Using the explicit expres-
sions for g’ and Py, the vector form for (4.18) (¢ = 1,2, 3) can be written as
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1

0 _ g0 . vy
>3 { + (200) - E) - R) V21, X (4.20)
Index y denotes differential operations with respect to y = x? -+ R,. From Maxwell’s relation [34],
L[4 = w0+ )] Y, (R,
af,uRy =(-1) [ vt D) R (4.21)
It is now easy to expand the Stokes flow W(y) in the form (4.2) and calculate the harmonics
dO v+1
@)= YA (5) ),
o\
)= 00 () i)
mi‘ do v+1
\+1 R Z C (v+1),m <J> YV~”7 (RV) (422)
(assuming p) = X i O) Indeed from (4.21),
. . 1
‘R, = [ v 2)E) - R, = 2(v+ DDU]E], o (4.23)
v=0 p=-—v 7
Substituting (4.21) and standard recurrent relations
(R + iR2) Yn(R) = R 11, Y21 (R) + £2, Y2 (R)]
(Rl - iRZ)Ymm( ) [fan:znﬂl( )+fan:ln 11( )}7
ReY,0(R) = R[f3, ¥, (R) + 15, ¥, (R)|. (4.24)
with
oo (n+m+1)(n+m+2)]" P _ [r=m=D)(n—m)]'"?
i (2n + 1)(2n +3) T 2n+1)(2n—-1) ’
3 _ 41 = —f2
5 (n—m+1)(n+m+l) 172 p (n—m)(n+m) 1/2
= s S = (4.25)
i (2n+1)(2n+3) b 2n—-1)2n+1)
into (4.24) and comparing the result with the general formula [35]
N[0 D ) )
Y(y) R, = ; {mva’w (v+ Do, (4.26)
yields complex 4- and B-coefficients in (4.22).
It easily follows from (4.20) that
[V x ¥(p)]- R, = Z Z ng; [R x V? afﬂR} (4.27)
p==v 7
Substituting (4.21) and recurrent relations
Yom(R i
(RoDs — RD) V22— L)t )Y (R) 4 [0 m 4 D4 Y (R},
Y.m(R) 1
Ry RiDg) 220 L mn 4 )Y (R) 4 [0+ )4 )] Y (R,
Y, m(R im
(R\Dy — RyDy) — (R) _ Yom(R) (4.28)

Rn+l - Rn+l
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into (4.27) and comparing the result with the general formula [35]
[V x¥(y)] R, = ZV(V + I)X(jzvﬂ) (4.29)
v=1

finally gives complex C-coefficients in (4.22). In actual programming, we prefer to reformulate this algorithm
in terms of normalized solid harmonics (|x/ — x| /do) vu(¥ — x)) instead of Z, ,(x/ — x?). This way, interme-
diate factorial operations (which could potentlally overflow at very large indices v, y) are avoided. The com-
putational cost of generating (4.22) to order v = ko for one patch is O(kj|B,|) (where |B,| is the number of
mesh-nodes x/ in B,) and comes from calculating the patch moments (4.13) and (4.16); transformation from
(4.18) to Lamb’s series (4.2) is only an O(ké) operation. In the optimal form, the algorithm includes only
11|B7,|k§ and IS\B},|k(2) double precision multiplications for a patch on a drop and solid surface, respectively.
In actual tests with ky = 25, this algorithm performed, respectively, about 2.5 and 2 times faster than our ini-
tial scheme (Section 3.2 of Ref. [20]) based on rotations. Besides, the new algorithm is considerably simpler
and can be generalized for Green functions other than the free-space (3.2).

Moreover, this approach based on patch moments leads to a special, very fast scheme to generate Lamb’s
series (4.2) for a patch B, lying on a spherical (solid) surface Sg, if the expansion center x? is restricted to be on
Sg. The key is the geometric identity

. 2 .
x — xf;’ = —2d2 (x’ — xg) ~n(xg> (4.30)
for x/ € B,, where dy is the sphere radius. Let
Qe =3 (pf +i0d)" (p)" 101V (¥ = ) 55,0, (4.31)
x/EB~-
with p/ = (»/ — x! )/ do and all indices being integer (0 < n, lu| < v). Itis easy to see that the single- layer
patch moments (4. 13) are expressed via Q"7 W1th n=0 and 1 So are the double-layer moments (4.16) E! “ ko

since n(x/) = (do/dg)p’ + n(x)). The moments D! ’M can be expressed in terms of Q"7 with n =1 and 2. Let
= Q% for brevity. Using (4.24) and (4.30), a recurrent relation can be derived for ol

v,

i

() +m () [t + A ~w]+2n3(x~?)[»u ohapgthiolul} @)

(assuming w? =0 for |u| > v) The Values of " are calculated directly by patch summation (4.31) for
O<ugvg ko + 1 and then »? . and o! ), are found successwely from (4.32); continuation to negative p is sim-
ply made by (4.11). Calculation of the necessary Q-coefficients is performed by additional recurrent relations
following from (4.24) and (4.31):

n+1m+1q 1 n,m,q 2 n,m,q+2
Q v ugwrl /Hrl v ,uQ» Lut+1>
n+l,m,q 5 n,m.q 6 (y1M,qg+2
Q - f; ;tQ\+l M +ﬁ ;LQ\ Ly (433)

Namely, Eq. (4.33) are first used with n =m = 0,¢ = 2, to determine Q. :”2 for n =1 and m < n, then with
n=0and 1, m < n, and ¢ = 0, to obtain the necessary Q",’fo Thus, 1nstead of 13 scalar complex patch sums
in (4.13) and (4.16) for every v, u, there are only three sums () ), (k = 1,2,3) to calculate in the special case
of a patch B, on a spherical solid surface; the total speedup in generating (4.22) is about three-fold (compared
to our new algorithm for an arbitrary solid surface), with optimized recurrent calculation of solid harmonics
for (4.13), (4.16), and (4.31).

4.3. Merging of singular expansions

Another element of our algorithm in Section 4.1 is the translation of Lamb’s singular series (4.2) for a patch
B, C Sp to the new expansion center x%. In principle, general formulae of Sangani and Mo [11] for translation
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of Stokes singularities of arbitrary order could be applied for this purpose. We use an alternative approach,
however, based on rotational transformations of spherical harmonics, since it reduces the number of opera-
tions for one translation from O(kg) to O(ké) and also greatly simplifies the algebra (which is otherwise
involved [11]). Mathematically, the idea is similar to that first used in conductivity [18,19] and then hydrody-
namical multidrop [20-22] simulations when changing the expansion center (the difference, though, is that here
we deal with singular-to-singular, not singular-to-regular reexpansions). Namely, a temporary “axial” basis
(x},x5,x%) is introduced for patch B,, with the x}-axis along the reexpansion vector Rp, = xf: — x% (Fig. 2).
The A-, B- and C-coefficients in (4.22) are rotationally transformed to the new basis by Wigner functions
(encountered in the quantum theory of angular momentum J36 ,37]), reexpansion to the new center x, is made
in the axial basis, and the new Lamb coefficients 4’ ﬁz 1) B /(? 1) C'(ff 1) ATC rotationally transformed back
to the original basis (x1,x,,x3). Each step of this three:step procedure (rotation + reexpansion + rotation) is
O(k;)-intensive. The back rotation is needed to sum up contributions from all patches B, C S; and form the
cumulative Lamb series (4.3).

The computationally efficient schemes for rotational transformation were discussed in detail [18-20], so we
only need here to consider reexpansion from (4 2), (4.3) for one patch B, in the axial basis, assuming that the

source Lamb coefficients A(j'()v o BY (1), C ’ (1) have already been rotationally transformed, and the new

harmonics p(_ﬁ()1 1) CD(_ﬂ()V 1) x(_ﬁ()‘, o to be determmed have the form
AN
B
H»l Z A H»l m( > v,m (Rﬁ)’

m=-—v

do v+1
(@)= 3 ()l 3

m=—y

0 v+1
\+1 Z B (v+1),m ( /> Y“vm (RB)’

in the axial basis (x|, x},x;); primes are omitted in the derivations below using the (x|, x},x;) basis.

We start from the translation formula for negative-order solid harmonics, which follows from the general-
ized addition theorem (e.g., Ref. [38]) and greatly simplifies in the axial basis, with splitting in the azimuthal
number m:

dO v+1 . do n+l1
(R—> You(R) =10, <;”> Yom(p), (4.35)

where
+1
n—v 0
” L@yt )0 w2 R ()
I, = o (4.36)
(= C2n+ 1)y —m)(v+m)! (do) +
B
and p=Rpy =y — xﬁ, for brevity. Coefficients A . are immediately derived from (4.35):
n+1 Z [x = l+] (437)
\m\
For calculating B% (1) m> WE dot the velocity (4.2) with p, using R, = p — Ry,:
(1) 5 @ *) 0P A
; |:2(2I’l — 1) p p—(nH) (n + 1)(1) (n+1) ;p ap - Rﬁ» ; a(P

— no o (v=2) P
v(2v—1)(’0 R/;;Ps)l’ (v+1) 2v(2v—1)(’0 + Ry, 2RﬁvP3)P o |’ (4.38)
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where p; in the Cartesian component of p in the axial basis, and partial derivatives are taken in the spherical
coordinates (p, 8, @) associated with the axial Cartesian coordinate system centered at x?, (¢ being the angle of
positive rotation about Rp,). Expanding the harmonics (4.22) in terms of p by (4.35) and using the last recur-
rent relation (4. 24) for p;Y,.(p), one can derive from (4.38):

12

") R;~d0 n—m+1)n+m+1)
B(ﬂ) R " C I" B () Br¢p
—(n+1),m By Z v —(v41), + Z v —(v+1),m (}’l + 1) (Zl’l =+ 1)(21’1 T 3)

v=|m] v=[m|

n+l
[(n+2)v=2)+(v+ 1], m 40
x Z V(2V _ 1) I\ n+l »+1 Z 2V 2V _ 1 11 nA— v+1), (439)

(omitting v = 0 for m = 0). To calculate C(ﬁ(nﬂ) .» we dot the curl of (4.2) with p. The curl for Lamb’s singular

series is conveniently provided by the general formula from Sangani and Mo [11]:

v=|m|

> 1
Z [—VV,( (v+1) __R x Vp H—l:l
v=1
yielding
) )
o (1 Pl Sy
n(n+1)1%, — Ry, +vp , (4.40)
2 =2 [v "o 3
where, again, the partial derivatives are taken in the spherical coordmates associated with the axial Cartesian
coordinates centered at x;}. Expanding the harmonics p(_()‘ " and ,{ 1n terms of p by (4.35), we arrive from
(4.40) at
W o imRy <1, G
C—(n+1),m m Zl [\ AT —(v+1), + Z‘l [vn - 1+l (441)

(omitting v = 0 for m = 0). Instead of seven sums over v in (4.37), (4.39) and (4.41), only four independent
sums need to be calculated for each n and m, which can be seen from a recurrent relation

! . _ 1/2 [m
= 1;/(;; {(n m)(n+ m)(2n 1)} el (4.42)

2n+ 1 vy

Together with rotational transformations, our algorithm for reexpansion from (4.2) to (4.3) for one patch in-
cludes only ~ 7.3k(3) double precision multiplications and takes 1.0 x IO_SkS seconds of CPU time.

4.4. Far-field calculations

The far-field contribution of surface S‘,;““, i.e., the last sum in (4.6), is calculated by a special form of the
Taylor double series for 7;(x/ — y) and/or G (x/ — y) in powers of x/ — xg‘mm and y — x? = R,. The necessary
formalism for this efficient, but somewhat cumbersome procedure has been already developed in our multi-
drop simulations [20-22] and only needs to be slightly adapted to the present problem. On every iteration,
a sufficient number of double-layer far-field moments

Bl = (17 Y )0y 320~ 1),
x/eSy
ED i = (10" Y (¥ =25) W) 0y ()2 (¥ — x5) (4.43)
x/eS,;
and (in case of a solid particle Sg) single-layer far-field moments

Dl =1z, (xf - xg) O, (x)AS

X/ESﬁ

D=0z, (x _ xﬁ) 0, (x') (xf _ x,j) AS, (4.44)

X/ES/;
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are precalculated for all Sy (cf. with Egs. (3.15), (3.73) of Ref. [20]); these coefficients are not to be confused
with E- and D- coefﬁ01ents introduced in Section 4.2 for patches. For a spherical solid Sy (with x0 being the
sphere center), only D‘ .« are calculated by summation (4.44). Indeed due to W(xf ) = 2n(xf )AS;,

n(x/) = (xf — xﬁ)/dﬁ and recurrent relations (4.24), other moments E‘ Fs Dv/;,” nd Ev,uks/ are expressed

through D /il and D i)Z R D(, , respectively. Using the moments (4. 44) the single-layer part of the far-field
contribution can be expressed in the coordinate form as

Z@Hﬂ—mwgimm{g;
x/esmn n=0 m=—n v -

1 1 ‘
- EE vﬁu k /an+v,m+u7)§k) (Rﬁa) + 5 (Rﬁx)zD Sﬁz,kanﬂ’MMA,Pg/) (Rﬂoc)] }

RS S ZonR)S S DYt PY (R, (4.45)
n=0 m=-—n v=0 p=—v
where P, (r) = (P, PP, PV) is the vector ofpressures for G (r), and Ry, = x° x?;m'" (=1/2,1/2)*. Upon
appropriate transformation of moments D‘ ks and E\ﬁ £ (similar to (4.19)), the double- layer part of the far-
field contribution takes a form analogous to (4.45) (see (A.2) of Ref. [22]) with the derivatives of G, and P,
only, and the two forms are combined for a solid surface 3. The cumulative far-field contribution from all f in
(4.6) is then combined with (4.8), before pointwise calculations are made for all y € S,.
Efficient Ewald-like forms for the periodic Green tensor G' and the corresponding vector of pressures P
follow from Hasimoto [27]:

v #k On-tvam-p {er( ) — E'P(]k) (r)re

mefnm2727tim~x

1 < p 2 i
— _ —t(x-m) 24, © -
P(x)=—x =5 E (x —m) /1/2 e t~dt 7 E > ,

G(x):—n LWZZ/ 1427 (x - )(:iom)]dt
-

The far-field parts G, P, are obtained from (4.46) by replacing the upper integration limit in the physical-
space contributions by zero for |m| < my (which generalizeses Eq. (3.74) of Ref. [20] for arbitrary mo) These
expressions are employed to precalculate a large root table of d,,[G(r) — 177 '(#)r,] and d,,P" (r) for
r = (mh,nyh,n3h), where the integers n; are in the range 0 < n < n, < Nrp, 0 < n3 < N7, the table step is
h=0.5/Nr, and Ny is typically 20; when necessary, the tabulated values are extended to the entire box
[—1/2,1/2]° by symmetry properties. In dynamical simulations, the derivatives in (4.45) at r = R;, are calcu-
lated by Taylor expansions (of typically third order) from the nearest point of the extended table (see (3.81) of
Ref. [20]). With m, > 2, the far-field expansions are fast convergent even for small systems, since dg,
dg < my + 1, and, on average, max(v,n) < 4-5 in (4.45) suffices for the dynamical simulations in Section 6,
with the necessary order v of derivatives 0, in the table never exceeding 11. For more demanding high-pre-
cision tests, larger v < 16 in the table were found to be sufficient. Calculation of the coefficients in the far-field
part of the cumulative series (4.45) for all S, is O(max(v,n)*(N + N)?)-intensive, but the numerical coefficient
is small and independent of surface discretization. In the present problem, with necessarily high resolution, the
total cost is instead greatly dominated by mesh-node operations, with approximately a linear scaling in the
total number of nodes.

4.5. Calculation of additional integrals
For spherical solid particles 3,; (the only case considered in the numerical examples of Section 6), the sim-

plest and most efficient way to incorporate the analytical calculation of additional integrals (2.11) (with
q(x) = (), +Qx (x— x%) on Sp) into the scheme of Section 4.1 is through modification of multipole expan-
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sions. The root far-field moment (4.44) Diﬁlk is modified by simply adding a continuous analog, where the
summation is replaced by integration, and @ replaced by ¢, which limits modifications (for p = 0) by

2
D(()l,g,k — Dgf&k +4n (d?z) <Qk>/3

4n 4 4n 4
D%,l — D%l — (d%> Q, D%,z — Dglg,z + 3 (d?;) 2
27r ) 2n 4
D], — D, + 25 (&) 2w, D, — Dfl, -2 (a)
(B) 27 0 .
D} <—D113+7(d) (@, — i)). (4.47)

The necessary changes are automatlcally propagated to other far-field moments EV 0 Df/iz,”, Efﬁ ‘ik‘s[ if they

are expressed via modified D k (as discussed in Section 4.4). For free-space contributions, it can be shown
that

n(d)’ L\
[Sq/(x)-[nGo<x—y>+zro<x—y>-n(x)]dsx=—@ 1+§<172> b

4
2 0
dp\ | (@) ReRy | 1\98) Ryx
+ 1—(—") et (3> Lt g ), Ry=y-x), (4.48)
B

where I(y) = 1 fory € g/; and /(y) = 0 when |Rg| > d?;. Representing the single-layer part of (4.48) as Lamb’s
singular series yields solid harmonics p_,, ®_,, y_,, which must be added to (4.34) to modify the coefficients:

47\ '?
A%y % () ey

2\ 12 .
A<-ﬁ2)‘1 — A(—BZ),I - ’1(3) (<41>ﬁ - l<‘12>ﬁ),

- —20 3 \3
2
n dg 27\ '/
=, - (3> <7> (@1 — i). (4.49)

With modified coefficients (4.47) and (4.49), the whole scheme of Section 4.1 now accounts for additional inte-
grals (2.11) except for (a) self-interactions (S = S,; Sm111 and m = 0) and (b) when the free-space contribu-
tion of S%““ + m to (4.6) is handled as a sum from 1nd1v1dua1 patches. In these two cases, the term (4.48) is
simply added directly, with Smln -+ m and xo ™" 4 m replacing Sy and xy, respectively.

4.6. Economical truncation of multipole expansions

An essential part of our algorithm in Section 4.1 is the “economical truncation” of multipole expansions/
reexpansions depending on a single precision parameter, ¢ < 1. Although there is considerable freedom in
constructing the truncation bounds, all efficient strategies must take into account that the convergence rate
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for Lamb’s series (4.2) and (4.3) strongly depends on do /R, < 1or d?, /Rg < 1, respectively. Likewise, the rate
of convergence of the far-field expansion (4.45) is mostly determined by the progression exponent
max(dg,dg)/cxﬁ, where {,; = min |Ry, — m| (over |m| > my) is the minimal center-to-center distance between
the shell D, and the shells around the periodic images of Sy outside the near-field zone for S, (see (4.5)).
An ad hoc choice of uniform truncation bounds for all the expansions/reexpansions would greatly reduce
the performance. On the other hand, rigorous majorants for multipole coefficients would not be most bene-
ficial either, greatly overestimating the actual truncation errors. Our previous papers [20-22] on multidrop
interactions offer a rational set of rules for the truncation bounds based on plausible arguments about the
behavior of multipole coefficients. The same techniques are adapted to the present problem, as outlined in
Appendix A. The differences from [20-22] are (i) a more general Green function partition (4.5) into the
near-field and far-field parts and (ii) an additional set of truncation bounds associated with the patch expan-
sions (4.2). Besides, surface partitioning into compact blocks through the slicing in Refs. [20-22] is disabled
here, so blocks therein correspond to entire surfaces in the present work. This approach, although inevitably
semi-empirical, leads to a truncation scheme depending on a single intuitive precision parameter, ¢. This pre-
cision parameter is not a deviation from a non-multipole solution (by standard summations) in a rigorous
sense, but does correlate with this deviation. As ¢ — 0, all multipoles are eventually included (if unrestricted
by the threshold k), which guarantees the convergence to the (much slower) non-multipole solution. Except
for the initial moment ¢ = 0, the truncation bounds are calculated on the first iteration only, since Q(x/) from
the preceding time step provides a sufficient approximation for (A.2); the cost of truncation-bound calcula-
tions is negligible.

5. Additional features of the algorithm
5.1. Preiterative part of the boundary-integral calculations

Efficient calculation of the inhomogeneous term (2.6) F(y) also requires multipole acceleration. Note, how-
ever, that (i) only drop surfaces contribute to this term and (ii) F(y) is calculated outside the iterations. For
this reason, we did not seek maximum efficiency of multipole acceleration for F(y) and used a simplification of
the logical scheme of Section 4.1, without drop surface partitioning into patches (or blocks). Such a scheme
almost parallels our initial algorithm [20] for drop—drop interactions, with two major exceptions. First, the
Green function partition (4.5) into the near- and far-field parts herein is different. Second, an estimation of
the behavior of the multipole coefficients (e.g., a; ~ Cp/(k + 1)* for small k) in the single-layer expansion
for (3.3),

k+1
o . > (d)
D S@n) G —p)as; = a| L) (5.1)
~ = Rg

X/ESﬁ
is done differently [21] through invariants of the tensor

T; = Z S(x)ASn(x") (xj — x?;), (5.2)

x/eSy

namely

CF@)JHTHE

which replaces (3.85) of Ref. [20] and was more successful in the present problem. In adapting the single-layer
truncation scheme from that paper, the same parameters e,, = 1 and e;; = 10 were used.

For spherical solid particles S4, the added-back integrals in (3.9) and (3.13) allow for simple analytical
expressions [6]:

+ [Ty + 3| T ] (5.3)
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a*\ I a>\ RR
Gords, = — L [ (1+ L) Sy (1) 2,
A olr [( +3RZ> +( Rz) RJ

. AZ - AS
}Md& 3 [6‘ (a 1) (R + unRe + OunRs) . 64
Sg

7S 3 R? R SR®

where, for brevity, r=x—y, R=Ry =y — x})f and a = d%. The discrete parts of IT and I' in (3.9) and (3.13),
although independent of the iterative solution, would still be too expensive to calculate by direct summations
for all relevant combinations (y,m, ) in drop-solid interactions, and so the use of multipole acceleration for
these terms was quite essential. Still assuming the spherical shape for S; and substituting ¥ = a@n(x’) — Ry into
(3.13), one can see that the calculation of the discrete parts of IT and I’ is reduced to calculation of twelve
Stokes vector fields: (i) single- and double-layer parts (separately) of (4.4) with Q(x/) = ¢, (k=1,2,3) and
(ii) the double-layer part of (4.4) with Q(x/) = ani(x/)e, (k < £). To expand each of these fields as a Lamb’s
singular series (4.3), we use the efficient techmque of Section 4.2 (with B,, x°, R, and d‘; therein replaced by the
quantities for the whole surface: s B> xﬂ, R; and d’ 4» respectively). Spe01ﬁcally for the spherical shape, all nec-
essary single- and double-layer moments (analogous to those in (4.13) and (4.16)) can be expressed in terms of

> oS, Y‘H( xﬂ) (5.5)

X/ES/;

by recurrent relations (4.24). For stationary meshes on solids §,;, the coeflicients (5.5) are time-independent,
and they are precalculated before the entire simulation for all f and 0 < u<v to a large order
v= kés) ~ 0.6N IA/ 2 (where N, is the number of triangular elements on a solid surface). Lamb’s series (4.3) is
then generated dynamically (to save memory) for each of the 12 fields to order v ~ kés) through (5.5) at a neg-
ligible cost, and converted to the more efficient form like (4.9). Pointwise calculations by these expansions are
expedited by the symmetry of IT and I'. The truncation bound v$ on v for calculating the tensors TI(y — m, f3)
and I'(y —m, f) in (3.11) by multipole expansions depends mostly on the clearance between y — m and Sp.
This bound is found semi-empirically from

- e k+1
Yooal | —L—) <02, (5.6)
v —m— xj|

k=vS+1

using the coefficients (A.1), to make the truncation errors for Il- and I'-terms compatible with those for the
first term in (3. 11) the tolerance ¢; is the same as in (A.3), only Ry, in the second occurrence is replaced by
x)— xﬁ Once v > k0 , direct summations (3.9) and (3.13) are more economical and used for II(y — m, f§) and
F(y m, f3) instead of the expansions. This simple combined scheme was found to accelerate the calculation of
all necessary Il- and I'-coefficients for solid-to-drop contributions almost three-fold in our runs; surface par-
tition into patches is not advantageous in this part of the algorithm due to the complex, tensor character of Il
and T'.

When the meshes on all solid spherical particles are identical, to within translation and possible scaling
about the particle centers (in the case of polydispersity), the preiterative calculation of IT and I' for solid-
to-drop contributions can be further accelerated through tabulation. Indeed, in this case, II(y, ) and
I'(y, p) are identical functions of y — x% for all 5, to within similarity transformations. We used a large table
outside a test unit solid sphere (150 points in the radial direction and 20480 auxiliary mesh triangles on each
concentric sphere around the test one) to calculate the most time-consuming I'(y,f) in the range
1.1 <Rg/ dz < 1.7 by linear and quadratic interpolations in the radial and tangential directions, respectively,
rather than using (3.13) dynamically. Outside the tabulation range and/or for I1(y, f8), calculations proceed as
described above. Such an approach additionally accelerates this part of the algorithm by about 1.5-fold, with-
out any appreciable loss of accuracy, and makes sense primarily for matching viscosities 4 = 1, when the iter-
ative part is relatively fast (Section 5.4); with even larger tables, I could be also handled by interpolations,
except for R/ d?f ~ 1. The tabulation approach, though, would be memory-prohibitive, if the meshes on solids
S were all different (in particular, adaptive to the random granular material geometry). We have found, how-
ever, adaptive meshes on solids to offer no advantage in the present calculations (Section 6).
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5.2. Mesh control

A familiar difficulty in 3D boundary-integral or front-tracking calculations for deformable drops is dynam-
ical surface-mesh degradation. Namely, if the mesh-nodes are advected simply with the interfacial (or normal)
velocity, internode distances become highly irregular in a short simulation time, invalidating the mesh. One
remedy, more traditional, is to restructure the mesh as needed, to maintain the quality of surface triangulation
by nodes addition/subtraction/reconnection (Unverdi and Tryggvason [39], Tryggvason et al. [40]). The most
elaborate version, widely used in drop breakup simulations, additionally incorporates adaptive mesh-node
redistribution to minimize a potential, spring-like “mesh energy” (Cristini et al. [24]).

A quite different approach, “passive mesh stabilization” [6,20-22,30,41] is a family of methods to prevent
mesh degradation not through topological changes but by adding a tangential field found globally for each
surface to minimize a “‘kinetic energy” of disordered mesh motion. The same non-adaptive version as for a
single drop squeezing through a finite cluster of particles [6] is employed herein. At any instant of time, the
vertex velocities V; = dx'/dt on S, to be used in the drop shape update are required to minimize

Z|| x|t { ”'|2r+2;c1§<d§f>2 (5.7)

under the constraints V; - n(x’) = u(x’) - n(x’), where the normal velocities in the RHS are provided by the
boundary-integral solution. The summations in (5.7) are over all mesh edges x;; = ¥/ — x' (with i < j) between
directly connected nodes on S, and over all mesh triangles A on S,, and C, = S, /(a® + b* 4 ¢?) is the “com-
pactness” of triangle A with area S, and sides a, b, c. The first term (5.7) prevents the internode distances from
becoming irregular, while the second term resists mesh triangle collapse. The form (5.7) is expressed as a qua-
dratic function of the velocities ¥; and minimized by conjugate-gradient iterations [30], until F stabilizes with-
in a relative tolerance of 107°. The resulting computational cost of “passive mesh stabilization” is negligible
compared to the rest of the code.

Compared to our other simulations [6,20-22], in the present problem for drops traveling through multiple
tight constrictions between solids, the trend for mesh degradation is more severe due to close drop-solid inter-
actions, even when the drops remain compact. For this reason, in the present problem, passive mesh stabil-
ization alone could not provide sufficient control over the drop meshes for the entire simulation, and it was
necessarily complemented by occasional “active” mesh-node redistribution (without topological changes to
the mesh), to keep drop tr1angu1at10ns reasonably uniform. Let x{, be the mesh-node positions on S, prior
to redistribution. For each xi, a best paraboloid [30] locally fitting S, around xj is constructed. Iterations

: . OF
Xy = X' — 56x’ (5.8)
are then organized to minimize the “potential mesh energy”

2 4 1
E= Z( M) +czA:C—rA, (5.9)

Xjj

with empirical parameters ¢ = r = 20, ¢ = 107'*-107'%, Here, (= [4S“/(]TZA\/§)]1/2 is the “target” value of a
mesh edge ||x;|| for a hypothetical surface coverage by N, equilateral triangles. For very gradual mesh tran-
sition, the displacement J is chosen as

AX;
0.001 mm (||6E/6xl||) (5.10)
where the minimum is over all mesh-nodes on the surface, and Ax; is the shortest distance from 5" to its neigh-
bors. After each iteration (5.8), x|, is placed on the best paraboloid for the nearest node x} € S, to continue
the process; the positions x, and the best paraboloids are not updated. Typically, from several thousand to
0(10,000) iterations are made; the maximum-to-minimum mesh edge ratio over the entire surface S, is usually
minimized with a much smaller number of iterations, but additional iterations serve to improve the average
compactness of mesh triangles. The first, spring-type term in (5.9) is highly sensitive to the ‘“‘tensions”
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||x;;|| — € and is akin to (although different from) the potential mesh energy of Cristini et al. [24]. Although
there is some freedom in choosing a working combination (g, r, ¢), we have found it necessary, in the present
problem, to always include the second term in (5.9), with a very small weight, to prevent mesh triangle collapse
during minimizations (5.8) at the advanced stage of drop squeezing.

Mesh-node redistribution for a surface S, was made whenever (i) the maximum-to-minimum mesh edge
ratio reached 5, or (ii) the minimum triangle compactness C, was below 0.05, or (iii) the maximum curvature
on S, reached (20-30)a~! (@ being the non-deformed drop radius); the first criterion was dominant. The cur-
vature criterion, although necessary, was somewhat difficult to use, since it was unclear how to distinguish
between numerical and physical high curvature developments, and it would crash the simulation in exclusive
cases (probably, because node redistribution interferes with close drop—drop and drop-solid interactions). In
such instances, operations (5.8) were simply delayed to a later moment. Owing to passive mesh stabilization
greatly slowing down mesh degradation, node redistribution was needed extremely rarely, and for a few drops
only. In a simulation of Section 6, with 25 drops and 10,000 time steps, the frequency of this operation (com-
pared to the hypothetical, most unfavorable case, when node redistribution is done for a// drops at all time
steps) was about 5 x 107°. As an alternative, we attempted advecting mesh-nodes with the interfacial velocity
u and using the node redistributions (5.8) as needed; the frequency of this operation was much higher
(~ 0.005), and such a solution could proceed to small times only, with much smaller time steps required
for stability and other difficulties. It is most beneficial, therefore, in the present problem to combine the
two strategies, passive mesh stabilization and active node redistribution through minimization of a potential
mesh energy.

The current version of our code does not incorporate topological mesh changes. It is perceived that the abil-
ity of drops traveling through tight pores of a dense granular material to stretch excessively and/or break
(where the topological changes would be unavoidable) is severely limited by geometrical constraints; a numer-
ical example in Section 6.1 confirms this viewpoint. The conditions for drop breakup in this problem, however,
may require further analysis.

5.3. Swelling technique for generating a start-up configuration

In the present problem of an emulsion flow through a granular material, an appropriate model for solid
particle arrangement would be a random packing in mechanical equilibrium (e.g., random “loose” or close
packing [42]) or, at least, a very dense unconsolidated packing. A thermodynamical, or thermodynamic-like
Monte-Carlo approach (e.g., [43-45]), with stochastic mixing and gradually swelling the particles, has been
widely used in the literature to numerically simulate unconsolidated packings of spheres and approach (with
fast densification rate) a random-close packing, which, mechanically, is the densest state that frictionless
spheres can be randomly packed into. An alternative, very different algorithm [46] offers a mechanical picture
[19] and can be extended for simulating “random-loose packing” of absolutely rigid spheres in mechanical
equilibrium, as the opposite case of high interparticle friction. Having generated a particle arrangement,
the next task is to add N drops with centroids in a periodic cell [0, 1)’ and prescribed volumes vy, ... v, as

a start-up configuration for dynamical boundary-integral (BI) simulation. Although the statistical steady state
results (Section 6) are expected to be independent of the initial conditions, generating a start-up drop arrange-
ment may present significant difficulties. One obvious way is to place drops first as spheres of tiny radius in the
available space between the solid particles and then subject the drop phase to stochastic mixing, with gradual
increase in the drop radii. In this manner, however, only low drop volume fractions ¢; = v; + ... vy can be

achieved without drop-solid and drop—drop overlapping, For example, adding 40 drops to a random packing
of 14 equisized solid spheres (at solid volume fraction ¢, = 0.5), we could not go above ¢, = 0.031 for mono-
disperse arrangements of spherical drops. It would be interesting to do BI simulations for much larger drop
volume fractions, when squeezing meets high resistance and requires large drop deformation. Expanding the
drops in the course of BI simulation, until the target volumes vy, ... vy are reached, was found to be compu-

tationally very prohibitive. The drop start-up volume fraction could be increased somewhat, if we stochasti-
cally mix both particles and spherical drops, with gradual swelling of their radii. In the example above, only
cqg = 0.155 at ¢, = 0.5 for monodisperse drop packings could be achieved through this procedure. More
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important, such a technique would be physically irrelevant; adequate simulation requires adding drops to the
existing material microstructure.

We have found it very helpful to have a special geometrical algorithm for preparing a start-up configuration
of smooth, deformed drops with a large enough volume fraction between solid particles. Once drops cannot be
expanded anymore as spheres during stochastic mixing (see above), the mixing is stopped and replaced by con-
tinuous, simultaneous expansion of all drop surfaces S, with deformation, viewed as a “time-dependent” pro-
cess, with artificial time 7. The normal “velocity” D, (y) of the surface expansion at y € S, has a special form

0 0
52( y) 5,\;“ N (5.11)
1+ Coxp [K1(0) + K5 (0)] 0" (»)

Consider a ray R(y) = {x : x = y + vn(y),v > 0 arbitrary}, emanating from y € S, in the direction of the out-
ward normal n(y) to S, (Fig. 4). The quantity 0°(y) in (5.11) is simply the distance from y along R(y) to the
nearest intersection point of R(y) with another surface (solid or drop) including periodic images, 5fnm is a pre-
scribed small parameter so that the local surface expansion at y asymptotically slows down, as 6" ) () reaches
8% . The smooth invariant k7 + &3 is based on principal curvatures k,(y) and k,(p) of surface S, at y, and
Cexp > 0 is another empirical parameter. There may be sharp variations of 0°(y) along the surface S, (Fig.
4). The additional term in the denominator of (5.11) is designed to smooth D,(y), makes it independent of
5 (p) for large 50(y) and does not allow catastrophically high curvatures to develop in this swelling process;
cexp 7 0 is essential for the success of this technique.

In numerical implementation, the swelling process is applied to mesh nodes y = x. Intersections of R(p)
with solids are handled analytically (which is the easiest for spheres, but can also be done for other shapes,
such as ellipsoids); intersections with other drop surfaces are approximated as intersections with flat mesh tri-
angles (Fig. 4). As in BI simulations (Section 6), the best paraboloid-spline method [20] is used to calculate
normals n(y) and curvatures k;(y), k2(y). An Euler scheme x’ + VAt is employed to simultaneously update
all the nodes x/, with the “‘velocities” V; provided by passive mesh stabilization (5.7) under the constraints
V;-n(x') = D,(x"); there is a Courant-like stability limitation on At, depending mostly on drop surface reso-
lutions. Once a drop volume overshoots the target value v,, the drop is scaled back slightly about the surface
centroid x to fit v, and excluded from the swelling process, which greatly speeds up the final stage. Upon com-
pletion, 5gﬁn provides an estimation of the minimum drop-solid/drop—drop gap in the start-up configuration.

In the present applications of this swelling algorithm to monodisperse arrangements of particles and drops,
we used 60, = 0.012a and c.y, = 2d, where @ is the solid particle radius; stable steps At were in the range of
0.005-0.01 for N, = 6000-8640 triangular elements per drop. In the numerical example above with 40 drops
and 14 solid spheres at ¢, = 0.5, it took about 6000 steps At to expand the drop phase from ¢, = 0.031 to
cq = 0.2, requiring 8-15 h of CPU time, for N = 6000 and 8640, respectively, with a simple way of calculating
60(y). An optimization of this stage would be hardly justified, since the boundary-integral simulations take
longer (Section 6). Passive mesh stabilization is used in the swelling algorithm to keep drop meshing almost
uniform. In the example above, the maximum-to-minimum mesh edge ratio over each surface S, remained

D,(y) =

@ :x = y+va(y)

Fig. 4. Sketch for the swelling algorithm to prepare a start-up configuration of drops between solid particles.
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within 2.16 (and much closer to unity for most drops); in contrast, when the mesh-nodes were simply advected
with the normal velocity (5.11), this ratio reached 17. Higher drop volume fractions (e.g., ¢, = 0.25 at ¢, = 0.5)
could be also achieved through the swelling algorithm, but those were too difficult for boundary-integral
simulations.

5.4. Miscellaneous

Traditional iterations by “successive substitutions” are divergent for the boundary-integral system (2.8),
(2.12), but successful solutions were obtained in the present work by an alternative, generalized minimal resid-
ual iterative scheme, GMRES(k). Typically, £k = 4 was sufficient and close to optimum in dynamical simula-
tions. In exclusive cases, a larger k, up to 7, was needed for convergence, especially at start-up, due to close
solid—solid contacts and the absence of a good initial approximation for (g, w). The code starts from £ = 4 and
automatically increases k by 1, if the maximum residual of the Eq. (2.12) over all mesh-nodes still exceeds a
prescribed portion (10~* in Section 6) of the r.m.s. value of the solution (g, w) over all surfaces after 25 iter-
ations. The converged solution from two preceding time steps was linearly extrapolated to provide an initial
approximation, except at start-up.

Unlike for pure drop systems, where the homoviscous case 4 = 1 has been studied most extensively in the
literature to avoid boundary-integral iterations, the present problem for 4 = 1 still requires an iterative solu-
tion. However, the iterations for g(x) on solids S, are now decoupled. After the Hebeker density ¢(x) is found
by the iterative technique above, with the convergence control over solids S, only (we used higher tolerance
107" in this special case), solid-to-drop contributions are calculated only once to get w(y). This provides a
great boost in performance, if the number of drops N exceeds (or is comparable to) the number of solids
N. The decoupling between ¢ and w, though, would not be possible had we chosen a constant flow rate instead
of the constant-pressure gradient formulation (2.9).

Dynamical smoothing at each time step (Eq. (5.2) of Zinchenko and Davis [20]), together with occasional
mesh-node redistribution (Subsection 5.2) helped to suppress artificial surface irregularities with abnormally
high curvature; the smoothing parameter &5 (Ref. [20]) was very small (10°) and found not to have any appre-
ciable effect on the global quantities of interest. The drop shapes were rescaled at each time step about the
drop centroids x¢ to keep the drop volumes constant. This common procedure is used to reduce the long-time
cumulative error, with a negligible effect in the limit of fine triangulations. As in [6], an empirical rule provided
a stable and economical time step (in dimensional form)

He . AXx;

=R m}“{amax Iz (xi)|7|k2(xi)|]}’ G12)
where the minimum is taken over all mesh-nodes x’ on all drops, @ is the non-deformed radius of the drop
containing x’, and Ax; is the minimum distance from x' to its neighbors on the same surface; an empirical
parameter K ,, was set to ~ 7.4 in all calculations. Although most calculations (Section 6) were done by the
second-order Runge—Kutta time integration, we have found more recently that the simplest Euler scheme is
quite adequate in the present problem; the results for the drop (Up) and the continuous (U) phase velocities
by the two schemes are barely distinguishable in the whole time range of simulations. The reason is that high
local curvatures developing in the drop squeezing process necessitate a very small time step (5.12) for stability,
which makes the time integration error far less than the triangulation effect.

If the problem was solved exactly, lubrication layers would prevent drop-solid and drop—drop contacts (in
the absence of singular molecular forces [47,48]). For flow-induced squeezing of a single drop through a tight
free-space cluster of two or three particles, it was possible to fully resolve lubrication and demonstrate that
there is, indeed, a drop—solid spacing about 1-2% of the solid particle radius during squeezing (Zinchenko
and Davis [6]). At subcritical conditions, when the drop is trapped in the constriction, a stationary gap (still
of the order of 0.01@) was observed in our simulations (ibid.); the existence of the stationary solution with a
non-zero drop-solid spacing is due to the pumping mechanism of the external flow [49,50].

In the present simulations, though, for multiple drops traveling under a pressure gradient through a dense
granular material with tight constrictions, it is much harder to resolve lubrication, and is not possible to com-
pletely avoid drop-solid overlappings, even with superhigh surface resolution (Section 6.3); if untreated, these
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overlappings quickly break down the simulation due to divergence of iterations. A simple technique was used
to control drop-solid spacings. Let o(y) be the distance from y € S, along the ray R(y) (Section 5.3) to the
nearest intersection point of R(y) with a solid, and d,,, (not to confuse with 5(r)nin from Section 5.3) be a small
prescribed tolerance. On each time step, after the boundary-integral solution, the drop mesh-nodes x’ with
0(x") < Omin are simply moved in the direction opposite to n(x’) to make 5(x') = dyin. This ad hoc technique
(which worked substantially better than, say, an artificial repulsion with singular forces) is not a substitute for
an accurate numerical solution and was only successful in our problem when lubrication is “almost resolved”
and the trend for drop—solid overlapping is very weak. In our simulations with high resolution, the above geo-
metrical correction was needed, at each time step, only for an extremely small portion of the total number of
nodes on drops (Section 6.3). Even more important, in an appropriate range of small ., and for conditions
not too close to critical for squeezing to occur, the global long-time quantities of interest (the continuous and
drop phase velocities) are practically insensitive to dn;, (Section 6.3), which justifies the procedure for finite
deformations, when lubrication layers are not highly localized.

Drop-drop overlappings also occurred in our simulations, but we have found it best to leave them
untreated. The analysis in Section 6 shows that these overlappings involve only a very small portion of the
total number of nodes on drops and, on the average, remain tiny throughout the simulation, disappearing
as more triangles are used. The virtue of the variational approach (3.5)—(3.7) to near-singularity subtraction
in the double-layer drop contributions is that it leaves boundary-integral iterations convergent for slight drop—
drop overlapping and moderate 4, thus allowing simulations to succeed. Again, though, for small deforma-
tions not considered here, close drop—drop interactions would be far more difficult to handle (Zinchenko
and Davis [23]), requiring resolution of small near-contact areas.

6. Numerical results
6.1. Drop squeezing through a cluster of four spheres

We first tested the free-space version of our multipole-accelerated code, when a single drop squeezes
through a tight cluster of four spheres of radius @ rigidly held in an infinite domain of fluid. The drop is freely
suspended in the flow u,,, which is uniform away from the particles and normal to one of the cluster faces (Fig.
5); the drop non-deformed radius @ = 0.5a is considerably larger than the inner radii of the constrictions. The
physical formulation is the same as for two- and three particle constriction problems [6] but the new case, with
the drop passing two successive constrictions and changing the direction of motion (Fig. 6) is much harder to
simulate. As the drop squeezes through, it decelerates about 500 times in the middle of the cluster. High res-
olution (11.5 K triangular elements on the drop and 8.6 K elements on each solid surface) has allowed this
simulation to succeed without the artificial parameter on,; the minimum drop-solid spacing reached
0.008a during squeezing. Due to the small cluster size and the lack of periodic boundaries, computational
gains through multipole acceleration are not as dramatic in this case as for emulsion flow (Section 6.3), but
they are still quite significant. For an instantaneous configuration in the middle of the squeezing process

Fig. 5. Particle configuration for the simulation of drop squeezing through a cluster of four spheres. Numbers show center-to-center
distances between the spheres, relative to the sphere radius. The inward arrow is the direction of u., and also shows the face through which
the drop enters the cluster, departing through the face shown by the outward arrow. The cluster orientation is the same as in Fig. 6.
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Fig. 6. Snapshots of a single drop squeezing between four fixed spheres in free-space, at a = 0.5a, u‘|u|/o = 2.5, A = 4; time is scaled
with @/|us|. At 1 =0, the drop was spherical, its center aiming at the center of the face shown by the inward arrow in Fig. 5 and at a
distance of 3a from that face.

(¢ = 308), one boundary-integral iteration by the present code takes 2.9 s, which is four times faster than by the
non-multipole code [6]; the whole simulation took 4500 second-order RK steps.

As the drop leaves the cluster (Fig. 6), it starts elongating extremely fast and breakup is imminent in the
free-space (which the present mesh algorithm would not capture); the drop, however, remained compact dur-
ing squeezing. This observation appears to confirm our viewpoint (Section 5.2) that excessive elongation and
breakup of emulsion drops traveling through a dense granular material are severely limited by geometrical
constraints imposed by the solid particles in a broad range of parameters, except when drops are small com-
pared to the constriction size. With the added possibility of drop breakup, simulations of emulsion flow
through a random granular material (Section 6.3) would probably be of formidable difficulty.

6.2. Single-phase flow through periodic and random beds of spheres

Accurate multipole expansion solutions have been obtained in the literature for the pressure-driven Stokes
flow of a pure liquid (no drops) through periodic (Sangani and Acrivos [1], Zick and Homsy [2]) and random
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monodisperse (Ladd [3], Mo and Sangani [4]) arrays of fixed solid spheres. The results are usually represented
by the ratio F/F, of the (average) hydrodynamic force acting on a bed particle to the Stokes drag 6mu,a(u) on
an isolated particle, where (u) is the flow velocity averaged over the entire space (with the continuation # = 0
inside the solids). Our code is also applicable in the absence of drops to calculate the same quantity
F/Fy=2/[9¢(1 — ¢)(Uc),] via the z-component of the non-dimensional continuous phase velocity U¢ (Sec-
tion 2), which provided very useful tests. In Table 1, our results for dense simple cubic arrays are compared
with those of Mo and Sangani [4]; at ¢, = 0.45 and 0.5236, F/F, can be also extracted from a more general
multipole collocation solution of Chapman and Higdon [5], with a perfect match to Ref. [4]. As the number
N, of mesh triangles on a solid in our solution is increased from 3840 to 24,000, excellent agreement with prior
results is achieved in the whole range of concentrations, up to the maximum packing ¢, = n/6; for ¢, = 0.5, the
deviation is only 0.24%.

We also calculated F/F, for random arrays at ¢, = 0.45 by averaging over 30 configurations with N =50
solid spheres in a periodic box and N, =11,520. The only difference from the standard Monte-Carlo method
[43] in preparing random configurations is that we did not allow spheres to come closer than 0.001@ during
stochastic mixing. This limitation is physically insignificant since there is no solid-solid lubrication in the
problem, but it improves the iterative convergence. Our average result (£/Fo) = 28.46 & 0.20 (67% confidence
level) is in excellent agreement with 28.6 for N = 16 from Ladd [3 [3] and Mo and Sangani [4], and with 28.2 for

= 108 from Ladd [3]. Recalculation for several chosen configurations using higher resolution N,= = 24,000
suggests that our average value of 28.46 must be corrected by about +0.2 to eliminate the triangulation effect
(in this test, a less optimal value of # = 1/a was used), which is still in very good agreement with the published
results.

Previous solutions [1-5] for these permeability problems did not need particle meshing or a boundary-inte-
gral. Instead, the flow was represented by a sufficient (and modest) number of multipoles located at particle
centers, taking advantage of spherical shapes. This approach results in a superior global rate of convergence
for F/F, (compared to our boundary-integral method), and a natural question is whether it can be generalized
for drop squeezing problems, with meshing and boundary-integrals applied to drop surfaces only. We
explored this option for the problem of a single drop squeezing through a tight free-space cluster of three
spheres (successfully handled by the boundary-integral tools [6]) but found it to not work. Even with multi-
poles of order up to 100 retained, our dynamical simulations crashed when the drop just entered the constric-
tion; a strong trend for drop-solid overlapping could not be overcome even with the artificial geometrical
barrier d,, leading to instability. It appears that the boundary-integral approach, with singularity distribu-
tions over a surface and subsequent integral desingularizations, provides much better control of the local error
than when the singularities are placed in particle centers. In our code, multipoles are used only to (very sub-
stantially) accelerate the performance, but the boundary-integral is the starting point, with necessary meshing
for both drops and particles.

The same observation explains why the Power-Miranda range completion for the double-layer (Section 2),
with an additional Stokeslet and Rotlet placed in the particle center, is less robust in drop squeezing problems
than is the Hebeker representation (used throughout this work) with force and torque effects distributed over
the particle surface.

Table 1

Non-dimensional drag F//F, on a solid sphere for a single-phase flow through simple cubic arrays

Cs Present code (n = 3/a) Mo and Sangani [4]
N, =8640 11,520 24,000

0.4 21.15 21.17 21.20 21.24

0.45 27.92 27.97 28.03 28.09

0.5 36.72 36.80 36.91 37.00

0.5231 41.56 41.67 41.83 -

0.5236 - - - 42.1
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Fig. 7. Snapshots of the emulsion squeezing through a random loosely-packed array of solid spheres, with Ca = 0.75, 1 =4, ¢, = 0.5,
cg=02,N=9,N=25 N, =8640, N, =6000, M, =M, =20,e=39x 10", ko = 30, n = 1/@, second-order RK scheme. Time is
scaled with ¢/ (|(Vp)|@). In the last frame, the drop phase only is shown, together with the periodic box [0, 1)* and the direction of —(Vp),
common for all frames. Only the drops and solids with centroids in the extended box [—1/2,3/2]® are shown.

6.3. Emulsion flow through a random granular material

Returning to the general problem formulated in Section 2, Fig. 7 represents snapshots of a monodisperse
emulsion flow through a monodisperse granular material of spherical particles with ¢, = 0.5 solid volume
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fraction, c¢; = 0.2 overall drop volume fraction (or 40% of the void space between the particles), viscosity ratio
L=4, caplllary number Ca = |(Vp)laa/c = 0.75, N =9 solids and N = 25 drops with centroids in the peri-
odic cell [0, 1) and high resolution (N » = 8640 and N, = 6000 triangular elements on each solid and drop,
respectively). In the last frame, the drop phase only is shown, together with the periodic box [0, 1) and the
direction of —(Vp) (common for all frames of Fig. 7). The stationary solid phase was first generated as a “ran-
dom-loose packing” of highly frictional particles with perfect contacts in mechanical equilibrium (against the
confining pressure, if applied) at ¢, = 0.5098. The code for such physically realistic particle arrangements is a
generalization of the random-close packing algorithm of Zinchenko [46] and will be described elsewhere; for
the purposes of the present paper, just the particle centers in [0, 1)3 are listed in Appendix B. The deviation of
¢, = 0.5098 from the experimental value of 0.555 for random-loose packings [51]is primarily a statistical fluc-
tuation for a small N = 9 system. The solid phase was then slightly diluted to ¢, = 0.5 by shrinking the particle
radius, to make gaps of 0.013a between former neighbors and alleviate iterative convergence difficulties for
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